
www.manaraa.com

Project Title: 

CSP-OZ: Semantics, Tools and Applications 

Supported By: 

    Research Deanship 

      Philadelphia University 

 

 

TECHNICAL REPORT 

 

Number:   TR-2016-01 

Date:  March, 2016 

Authors: 

                    Prof. Dr M. Bettaz 

                     Dr M. Maouche 

  



www.manaraa.com

Abstract. In this ongoing work we propose a development method-
ology aiming to bridge the gap between approaches used by (e)-science
communities to develop their modeling frameworks and model driven en-
gineering approaches used to develop modeling frameworks with similar
complexity. The proposed methodology relies on a sound integration of
UML-MARTE, CSP-OZ, and PyCSP. The motivation behind the use of
MARTE, a UML profile dedicated for embedded and real time systems,
is the similarity between its modeling approach, based on the so-called
Y structure, and the approaches used in the multiscale simulation field.
We show, in this paper, how to exploit this similarity to bridge the gap
between both. A first contribution of this work consists in adding a new
sub-profile for MARTE, the called SSRM (Specific Software Resource
Model), dedicated to the modeling of multiscale simulation frameworks.
The SSRM subprofile is intended to define specific resources that capture
multiscale simulation core concepts. A second contribution of this work
consists in setting a formal semantic framework for our development
methodology aiming at ensuring a sound integration (from a semantic
point of view) of UML-MARTE, CSP-OZ and PyCSP. To this end, we
adopt a semantic framework based on the institution theory, a power-
ful and appropriate mathematical theory commonly used in computer
science for semantics purposes.

Keywords: Multiscale Simulation Frameworks, Software Develpment
Methodologies, UML-MARTE, CSP-OZ, PyCSP

1 Introduction

The discipline of modeling is widely used within e-science and engineering.On one
side the MDSE (Model Driven Software Engineering) community emphasizes the
use of models along the whole (software) development life cycle with the intent
to build systems. Usually, models are created using specific visual languages such
as UML (Unified Modeling Language) and its derivatives; models are then used
to analyze properties and create code by transformations and refinements. On
another side, the e-scientific community also uses modeling but here the intent is
to simulate real world phenomena (their behaviors over time) using simulation
engines. Such engines must be able to execute (e-science) models independently
of the programming languages used to implement them, allowing by the way
the ability to reuse legacy (e-science) model codes. Topcu et al. ] reports in
[1] a series of contributions adopting model driven engineering principles in the
construction of distributed simulation systems. These systems are intended to
provide modeling/simulation frameworks allowing (e-science/engineering) mod-
elers to first create and implement their models, then to simulate them on a
distributed platform. Our objective in this work is to set a software development
methodology, integrating model driven engineering and formal development, and
targeting the development of distributed simulation systems in particular and
reactive systems in general. The main contribution of this paper consists to show

1



www.manaraa.com

the applicability of our methodology to the development of multiscale simulation
frameworks.

Adopting an integrated development environment (IDE) associating model-
ing and formal specifications for the development of systems is among the three
recommendations reported in [2]. Visual modeling, using UML language for in-
stance, is helpful at the requirement level where an informal high level architec-
ture of the system to be built is modeled. Formal specifications are necessary
when properties analysis and correctness of the code obtained through refinement
are requirements of the system under construction. The literature reports var-
ious integrated development methodologies. Among the valuable contributions,
we may mention [3, 4] where an integrated development environment based on
UML, CSP, and Java is used to develop and implement a generic framework
for distributed simulations. We may also mention the work in [5] where an in-
tegrated development environment associating UML-RT (a derivative of UML)
for requirements level, CSP-OZ (a formal specification language) for the design
level, and Java for the implementation level, is used for the development of re-
active systems. Our methodology consists in using UML-MARTE profile [7] at
the requirement level, CSP-OZ [8] at the design level and PyCSP [11] at the
programming level. The motivation behind this choice will be explained in the
remaining part of this section. One major issue raised when using the previ-
ous mentioned works is the problem of consistency for instance between various
UML requirement models on one side and between UML models and design
level formal specifications on another side. Such issues and semantics concerns
are addressed in Section 5.

1.1 Requirement Level

UML-MARTE is a standardized derivative of UML dedicated to embedded and
real time systems modeling. It defines models for applications as well as mod-
els for execution platforms that host applications. The term ”Execution plat-
form” covers both hardware and software platforms. For this purpose UML-
MARTE defines generic models for hardware and software resources that can
be instantiated according to the desired execution platform. Although UML-
MARTE targets mainly embedded and real time systems, we envisage to adopt
it for the modeling of distributed simulation systems. Four main motivations
are behind our proposal. First there is a kind of similarity between modeling
an application together with its (hardware/software) execution platform, and
modeling an (e-science) phenomena together with its simulation engine (i.e.,
” execution platform”). Roughly speaking the idea consists in considering im-
plemented (e-science) models as UML-MARTE (application) models encapsu-
lating (e-science) models, and considering simulation engines as UML-MARTE
( execution platform) models. It presupposes that specific software resources
intended to take in charge simulation engine core concepts are defined and mod-
eled as UML-MARTE software resources [7]. This may be done by specializ-
ing the MARTE Generic Resource Model (GRM) sub-profile to define a new

2



www.manaraa.com

specific resource model sub-profile, called SSRM, intended to capture the multi-
scale simulation core concepts. Second both UML-MARTE profile and mustiscale
modeling and simulation are component based models, thus making their rap-
prochement realizable. [9] advocates a component based approach for distributed
multi-disciplinary and multiscale (e-science) simulations where (e-science) mod-
els are decomposed into a set of coordinated (e-science)- submodels (components)
that interact through specific channels. In our proposal these (e-sciences) compo-
nents (i.e., implementions o f (e-science) submodels) are seen as UML-MARTE
applications models. Third UML-MARTE supports concurrency, synchroniza-
tion and communication features which are useful for modeling distributed and
concurrent simulation systems. Fourth UML-MARTE defines an explicit model
for the (logical/physical) time concept so that it may cover the development of
both event-driven simulators and time-driven simulators.

1.2 Design Level

CSP-OZ [8] is a hybrid formal language dedicated to the specification of reac-
tive systems. It allows to specify in an integrated way the state and the behavior
views of reactive systems. CSP-OZ presents two interesting features that are
useful in the context of our software development methodology: First a CSP-OZ
specification may be refined in such a way that the gap between specification
and implementation (coding) may be incrementally reduced, second CSP-OZ
specifications may be formally analyzed, for instance checking the correctness of
specification refinements and verifying properties relevant to their behavior (live-
ness/safety properties). It is important to recall that in a multiscale simulation
a set of distributed (e-science) models run and interact concurrently inducing
potential deadlocks [9]. Therefore it is important to provide means to formally
specify and verify the concurrent behavior of multiscale simulations.

1.3 Implementation Level

PyCSP, a Python programming environment augmented with a CSP library, is
used as a target programming language in our software development methodol-
ogy, more precisely CSP-OZ specifications built at the design level are translated
into PyCSP code. PyCSP seems to be adequate for a smooth transition from
a sufficiently refined CSP-OZ specification to a PyCSP code. Moreover Python
has been used to develop various simulation engines [10]. Finally PyCSP has
shown its strengths for clusters platforms [11], thus suitable for implementing
highly parallel systems.

The paper is organized as follows: Section 2 presents the related works. In
section3 we introduce the core concepts of MUSCLE a recent multiscale model-
ing/simulation framework. Section 4 is devoted to the description of our software
developement methology. The semantic issues related to our software develop-
ment methodology are outlined in section 5, and finally some conclusions and
future works are given in the section 6.

3



www.manaraa.com

2 Related Works

Past and recent works [2, 3, 5, 14. 15] propose to bring together UML, widely
used in industry and academia, and formal methods. Mainly three different ap-
proaches to integrate formal methods with UML are reported:

The first one described in [3, 4] consists in using UML at each level of the
software development (requirement, design, implementation) to model various
complementary views of systems under construction while authorizing the use of
formal languages, like for instance process algebra, to specify some critical views
(if any). This is motivated by the need to verify some critical aspects of systems.
Once formally checked, these formal specifications are brought back to their
’equivalent’ UML models using a set of well-defined transformation rules. UML
models may be extended and refined along the whole development life cycle. In
[3] the authors prescribe a set of well defined rules to ensure the correctness of the
UML models refinement and extensions.This software development methodology
has been built and tailored to the development of a generic simulation framework.

The second one described in [14, 15] recommends to keep the use of UML
along the whole development life cycle; the main motivation here is the benefit of
the visual modeling; to endow UML l with a sound semantics addressing by the
way the consistency issue of the various UML models and the correctness issue of
the refinement process of UML models. Instead of [5], the authors of [14] suggest
to define a comprehensive semantics for UML using a so-called systems model,
that is bringing the semantics of all UML models to a common formalism like
for instance transition systems. Quoting [15]: ’However this a thorny business
as every detail has to be encoded into one , necessarily quite complex seman-
tics’. That is why the authors of [15] suggest to adopt the institution theory as
a semantic framework for UML language. Institution theory is a mathematical
theory that demonstrated its effectiveness to cope with semantic issues in a solid
and elegant way. Roughly speaking, UML (sub)languages are first equipped with
institutions capturing their individual semantics in an abstract way and then ad-
equate formal mappings (morphisms/co-morphisms) relating these institutions
are set. Institution morphisms are well suited to capture the issues of models
consistency and refinement while co-morphisms are useful to capture the encod-
ing of a source formalism into a target formalism in an abstract way, that is
independently form the underlying logical frameworks. Furthermore the grow-
ing family of available institutions backing various formal languages [16, 17, 18]
makes this approach very attractive and less expensive

The third one described in [5] consists in adopting UML and/or its deriva-
tives to model systems( their structural and behavioral view) at the requirement
level. Here the methodology takes benefit from the visual capabilities provided
by UML to sketch initial requirements and architecture of the systems to be
implemented. The obtained UML requirement models are then translated into
formal specifications which are incrementally refined until they may be directly
coded using a suitable programming language. More precisely [5], targeting the
development of reactive systems, adopts UML-RT profile, a derivative of UML,
for the requirement level, CSP-OZ for the design level. CSP-OZ specifications

4



www.manaraa.com

are gradually brought to Java code using special programming languages that
integrate formal assertions with conventional code such as JVM (Java Modeling
Language). It is worthwhile to note that the use of such special programming
languages is recommended in [2]. The ability to annotate Java code with formal
assertions allows to preserve the precision of the formal specification in the im-
plementation [5]. The semantics underlying the UML-RT to CSP-OZ translation
is addressed in [12, 13].

From a methodological point of view, our proposal builds on [15, 5]. First
UML is retained to capture informal requirements and sketch initial systems
architecture. Adopting CSP-OZ at the design level contributes to address cor-
rectness issues inherent to the target of our methodology that is building re-
active systems in general and distributed simulation frameworks in particular.
CSP-OZ, thanks to its CSP (Failure Divergent) semantics, takes benefits from
the available CSP model checking tools for properties verification. However we
retain UML-MARTE rather than UML-RT (used in [5 ])for many reasons. UML-
MART component model is closer to the conventional UML2 component model
with additional advanced features while UML-RT is based on a very specific
and no neutral component model. Moreover UML-RT does not provide specific
features supporting the modeling of execution platforms intended to host UML-
RT applications. Finally UML-RT does not support an explicit notion of time,
thus making it not suitable for time driven simulation systems. UML-MARTE
profile supports both the modeling of applications as well as the modeling of
the execution platform where these applications are hosted. Our software devel-
opment methodology takes advantage of this late feature to develop distributed
simulation systems. Moreover UML-MARTE supports the concept of time in an
explicit way. Dealing explicitly with time offers two opportunities in the field
of simulations: ability to address event based simulators as well as time-driven
simulators and also the ability to conduct performance evaluation of simulations,
thanks to UML-MARTE subprofile dedicated to performance issues.

From a semantic point of view, we adopt an institution-based framework
for our software development methodology. First of all institutions capture in an
abstract and effective way consistency and translation issues. Second, institutions
for CSP, OZ (Object Z) are available, while sketches of institutions for UML
profiles are under elaboration [15].

3 Overview of MUSCLE

The authors of [9] present foundations for multiscale modeling and distributed
multiscale computing. MUSCLE (Multiscale Coupling Library and Environ-
ment) is a modeling and simulation framework built on these ideas [25, 26] .
In MUSCLE, multiscale modeling consists in decomposing an (e-science) model
of the phenomena under study into a set of MUSCLE single scale (sub)models
that are coupled according to a given topology. These single scale (sub)models
are independent in the sense that they only rely on messages (observations) they
send or receive at specific ports. Each single scale model is handled as an inde-

5



www.manaraa.com

pendent component owning its simulation time, spatial and temporal scales. It
synchronizes with other single scale (sub)models by exchanging messages car-
rying time points. MUSCLE single scale (sub)models encapsulate the code of
(e-science) models, therefore abstracting from the programming languages used
to code the (e-science) models.

Conduits, special kinds of communication channels, are used to couple single
scale (sub)models through their input/output ports. Moreover MUSCLE pro-
vides additional specific computational elements like filters and mappers that
can be applied to conduits. Data exchanged between single scale (sub)models can
be modified in transit because data expected by a single scale (sub)model does
not automatically match the observation of the other single scale (sub)model.
Filters change data in a single conduit while mappers may combine data from
multiple sources or extract multiple data from one observation.

The authors of [9] formalize MUSCLE core concepts like single scale (sub)models,
conduits, filters, mappers, observations) (data passed between single scale mod-
els). The execution flows of (sub)models are formalized in terms of a Submodel
Execution Loop (SEL) which specifies a general execution loop to be followed
during the execution (simulation) of a single scale (sub)model.

4 Applying Our Software Development Methodology for
Simulation Frameworks

Our software development methodology involves three phases: a requirement
phase where UML-MARTE is used to build high level abstract models of sys-
tems under construction, followed by a design phase where produced UML-
MARTE models are transformed into CSP-OZ specifications which may be for-
mally checked (verification of systems properties), and finally an implementation
phase where the produced CSP-OZ specifications are refined and then trans-
formed into PyCSP code.

This paper focuses on the requirement phase of our methodology, while the
design and implementation phases are sketched. These last ones will be detailed
in future works. The requirement phase is conducted in such a way to be tai-
lored for the development of (e-science) modeling and simulation frameworks.
MUSCLE multiscale framework serves as a running example for this work.

4.1 Requirement Phase

Generally, the deliverables produced at the requirement level are (software engi-
neering) models that describe the targeted application at a high level of abstrac-
tion. UML-MARTE, a UML profile tailored for the development of real time and
embedded systems, provides useful features and capabilities that make it suit-
able for the development of modeling and simulation frameworks. To make the
discussion more concrete we will describe in the following the processes followed
by the UML-MARTE development methodology and the methodology followed
for building (e-science) models and simulation frameworks.

6



www.manaraa.com

1. UML-MARTE Methodology:
According to [24] UML-MARTE system models are divided into three sub-
models, following the so-called Y structure.

(a) Platform Independent Model (PIM) which is intended to model vari-
ous views of the systems to be developed. Here the functional and non-
functional aspects of systems are modeled. More concretely models re-
lated to the following system views are built: data view, functional view,
application, concurrency view, communication view, and memory space
view. Specific software resources defined in the so-called SRM (Software
Resource Model) sub-profile of MARTE, may be used to build PIM mod-
els. Thus SRM acts as an API for PIM models developers.

(b) Platform Dependant Model (PDM) which is intended to model execu-
tion platforms that support and host upper systems. Execution platform
models include hardware as well as software resource models. Thus PDM
models developers may use both SRM and HRM (Hardware Resource
Model) sub-profiles to create PDM models.

(c) Platform Specific Model (PSM) which is intended to model the architec-
tural view of systems as well as the allocation models that describe the
allocation of PIM models to their associated PDM models.

2. Multiscale Modeling and Simulation Methodology: The methodology de-
scribed in this part refers to the approach used by the multiscale simulation
community [9, 25, 26]. A deep analysis of the contributions in [9, 25] shows
that multiscale modeling and simulation frameworks follow a more or less
similar process. More concretely:

(a) (e-science) modelers build multiscale models by coupling specific sin-
gle scale models according to given configurations. Usually, multiscale
modeling frameworks provide a set of APIs including services on spe-
cific resources such as MUSCLE Controller, Filter, Mapper, and
Conduit. These resources are used to create (e-science) single scale and
multiscale models. At this point we observe a similarity with what is
done by PIM modelers in the sense that (e-science) single scale and
(e-science) multiscale may be seen as kinds of PIM models that are
built using specific software resources defined in a particular ”SSRM”
(Specific Software Resource Model) sub-profile.

(b) Multiscale simulation frameworks provide runtime environment for the
execution (simulation) of multiscale models. Particular instances of these
run time environments are configured and instantiated in such a way to
support the execution of multiscale models. Specific software resources,
offered by mutiscale simulation frameworks, may be composed to cre-
ate run time environment instances tailored to multiscale models. Local
manager, Simulation Manager are examples of such specific soft-
ware resources. This step of the process is similar to the so-called PDM
modeling in the sense that a particular run time environment instance ,
”implemented’ as a network of local managers instances, may be seen as
a kind ”PDM model”.

7



www.manaraa.com

(c) Single scale models that are parts of a multiscale model are then allocated
to local managers belonging to an instantiated run time environment.
This step is similar to the MARTE Allocation modeling.

In the context of the MARTE modeling of MUSCLE multiscale framework,
specific software resources tailored to this framework need to be defined. At this
point two approaches may be envisaged:

1. The first approach consists in creating MARTE models for the various MUS-
CLE core concepts composing MUSCLE. These MARTE models are seen as
PIM models which are built using software resources defined in the SRM
sub-profile.

2. The second one consists in extending MARTE profile to support in a native
way the core concepts related to multiscale modeling and simulation frame-
works. For instance the concepts of scale, single scale model, filter, mapper,
conduit. This approach requires much more efforts in the sense that an ex-
haustive set of agreed and unified multiscale concepts need to be identified,
and specific metamodels for these identified concepts need to be defined.

One of the main objectives of our research work is to not address a specific mul-
tiscale simulation platform but to address generic multiscale simulation frame-
works. The second approach seems to be more suitable for our objective.

Our contribution, here, consists in showing how to exploit this similarity
to conduct a UML-MARTE modeling of (e-science) modeling and simulation
frameworks. Applying our MARTE approach for these frameworks relies on the
following principles:

First of all, core concepts of MUSCLE (as an example of simulation frame-
works) single scale models, controller, conduit, port, filter, mapper, simulation
manager, local manager are seen as specific MARTE resources. For this pur-
pose we propose to define a new Specific Software Resource (SSR) sub-profile
intended for multiscale simulation domain. The following diagram shows how
this specific MARTE sub-profile may be defined by specializing the MARTE
Generic Resource Model (GRM) sub-profile.

Hereafter we explain how the typical Y structure may be applied to multiscale
simulation frameworks:

1. PIM Level: MUSCLE simulations, such as described by the (e-science)
modeler in the form of configuration files, are considered as MARTE ap-
plications composed of the following MARTE models representing MUS-
CLE single scale models, MARTE models representing MUSCLE filters and
mappers, and MARTE models representing MUSCLE couplings. The SSR
sub-profile defines model elements that capture multiscale simulation core
concepts.
Figure 1 depicts the so-called MARTE Detailed Resource Model (DRM)
package composed of the following packages: General Resource Model (GRM)
package which includes the features which are required for dealing with the
modeling of executing platforms at different level of details and the modeling

8



www.manaraa.com

  

NF Ps CoreElements Time 

GRM 

SRM  

(Software Resource Modeling) 

HRM  

(Hardware Resource Modeling) 

SSRM  

(Specific Software Resource Modeling) 

DRM 

(Detailed Resource Modeling) 

*  

Fig. 1. Extended-Detailed Resource Modeling (DRM)

of both hardware and software platforms, Software Resource Model(SRM)
and Hardware Resource Model (HRM) packages providing a specialization
of this general resource model for software and hardware related platforms
respectively [7]. We propose in this paper to enrich the Detailed Resource
Model with a new package, called Specific Software Resource Model (SSRM)
package, intended to provide a specialization of GRM for dealing with mul-
tiscale simulation core concepts.

2. PDM Level: MUSCLE run time environment is modeled as a MARTE soft-
ware execution platform composed of appropriate model elements defined in
our specialized MARTE resource sub-profile, i.e.,Local Manager, Simula-
tion Manager, and model elements defined in the SSRM sub-profile such as
Communication Resource models, and Synchronization Resource mod-
els. The last two MARTE models provide the means of interaction between
Simulation Manager and Local Manager models elements .

3. PSM Level: MARTE Allocation Modeling sub-profile provides a set of gen-
eral concepts that concerns the allocation of functionality to entities respon-
sible for the realization and execution [21]. It covers two main aspects: a

9



www.manaraa.com

spatial allocation of PIM models that model systems to PDM models that
model execution platforms, and a temporal aspect (for instance scheduling
of schedulable resources).

PIM SSRM

PSM
PDM

A

B

F1

BF1A

CA

CB

F

LM SM

SM1LC1

LC2

Single Scale Models

Multiscale Model

Controller

d1

d2

Filter

Conduit
d1

d2

Local Manager Communication Resource Simulation Manager

Uses
Instantiation
Allocate to

Fig. 2. A ”Y structure” for a multiscale simulation example

In the context of our case study (e-science) models , defined in the PIM part,
are allocated to specific Local Manager, and MARTE Conduit models are
allocated to specific Communication Resources models defined in PDM
part.

Figure 2 depicts an illustration of our approach. It shows how (MARTE) Y
structure may be applied to a simple example of multiscale simulation. SSRM
provides specific resources for PIM modeling (Controller, Filter, Conduit)
and PDM modeling ((Local manager, Simulation Manager, Communica-
tion Resource). The figure shows a multiscale model composed of two single
scale models (A and B), one filter (F1) and two conduits (d1 and d2). The
modeler uses CA and CB models (instantiations of the controller resource) to
build A and B. He/she uses also instantiations of the resources Conduit and

10



www.manaraa.com

Filter to build a mutiscale scale simulation model. Both single scale models and
mutiscale simulation model are defined in the PIM part of the Y structure. The
PDM part models the simulation runtime environment. It is built by instanti-
ating one instance of the resource Simulation Manager, two instances of the
resource Local Manager and two instances of the resource Communication
Resource. The PSM part models the allocation of PIM models to PDM models:
model A is allocated to the LC1 model, (F1, d1, B) models are allocated to LC2
model, d1 model is allocated the instance of communication resource that links
LC1 and LC2.

4.2 Design Phase

MARTE provides a generic component model subprofile that defines various
kinds of model elements (application components, connectors, ..). System mod-
els (i.e., PID, PDM and PSM sub-models) built during the requirement phase
are expressed in terms of component diagrams composed of MARTE component
models which are interconnected via MARTE connectors. MARTE component
diagrams may be organized in hierarchical structures; rtUnits and ppUNits are
basic MARTE component models that are used at the lowest level of (hier-
archical) component diagrams. rtUnits are active classes characterized by the
services they provide, their communication ports, their attributes and also by
their behavior usually expressed in terms of protocol state machines; ppUnits
are similar to rtUnits except that they do not own an internal behavior (passive
classes). The previous phase produces a set of MARTE components diagrams.
In the design phase the produced MARTE component diagrams are translated
into CSP-OZ specifications. These ones are then analyzed so that relevant sys-
tem properties can be verified. Thus, potential deadlocks that occur during the
concurrent execution of multiscale simulations [9] can be detected during the
design phase.

A set of defined et of informal rules drive the translation process. These rules
are described hereafter:

1. First the rtUnits and ppUnits, produced in the previous phase, are translated
into their corresponding CSP-OZ classes. RtUnits services and attributes
are respectively mapped into the so-called CSP-OZ communication-schema
(class operations); rtUnits (ppUnits) ports are translated into the so-called
CSP-OZ channels; rtUnits (ppUnits) attributes are translated into the so-
called CSP-OZ data schema (class attributes) while the protocol state ma-
chine associated with rtUnits is mapped into its corresponding CSP process
(i.e., CSP part of CSP-OZ classes). ppUnits are also translating into CSP-OZ
classes with an empty CSP part.

2. Flat component diagrams are composed of rtUnits (and/or ppUnits) inter-
connected with MARTE connectors through ports. A flat component dia-
gram is translated into a so-called CSP-OZ system class that includes:
– a set of objects that belong to CSP-OZ classes resulting from the trans-

lation of rtUNits and ppUnits.

11



www.manaraa.com

– a set of CSP channels.
– a CSP process that describes the overall behavior of the CSP-OZ system

class. itemize

The details of these translations rules are not in the scope of this paper. A
rigorous formal semantic for these informal transformation rules need to be set.
This aspect is discussed in the section 5.

4.3 Implementation Phase

The previous phase produces a set of CSP-OZ classes (including the so called
system classes). In the implementation phase, the produced CSP-OZ classes are
translated into their corresponding PyCSP code. A set of defined informal rules
drive the translation process. These rules are described hereafter:
– channels defined in CSP-OZ classes are mapped into PyCSP channels.
– communication-schema defined in CSP-OZ classes are mapped into Python

functions.
– process parts of CSP-OZ classes rae mapped into (individual) PyCSP pro-

cesses.
– CSP-OZ system classes are mapped into PyCSP processes. (individual) PyCSP

processes, resulting from the translation of CSP-OZ classes, are combined
using relevant CSP operators. The details of these translation rules are not
in the scope of this paper. A rigorous formal semantic for these informal
transformation rules need to be set. This aspect is discussed in the section
5.

5 Semantics Issues

We adopt the institution theory [6], a sound and powerful mathematical the-
ory, as a semantic framework for the proposed software development method-
ology. The institution theory, widely used in computer science for semantic
purposes [15, 16, 17, 18], allows to abstract from the logics underlying for-
malisms and languages. The following arguments are behind the motivations
of our choice:
• Institution theory provides sound concepts to address the issue of the

correctness of the mapping between different formalisms. More precisely
formalisms are equipped with appropriate institutions; Their mappings
are expressed in terms of appropriate morphisms and co-morphisms be-
tween their backing institutions, allowing by the way the formalization
of translation rules introduced in the section 4.

• A subset of formalisms adopted by our software development methodol-
ogy, i.e state machines [16], CSP [17] and OZ [18], are backed by appro-
priate institutions.

To this end we adopt the same approach as in [15]. Figure 3 shows the trans-
formations to be developed between MARTE modeling diagrams (state ma-
chines, component diagrams, and class diagrams) and additional languages

12



www.manaraa.com

State Machine

MARTE Component
Diagram

MARTE Class Diagram

CSP Specifications

CSP-OZ Specifications

PyCSP

MARTE Modeling

Design

Implementation

Fig. 3. Institution morphisms between languages and diagrams

(CSP, CSP-OZ and PyCSP). The arrows depict the required co-morphisms
which correspond to the encoding of one logic which underlies a given dia-
gram type or language to another one.
The institution-based framework for our software development methodology
is currently under construction. More concretely we plan to build:
• an institution for PyCSP (from scratch).
• an institution for UML MARTE profile. Here we build on the works

mentioned in [15].
• an institution co-morphism from the UML state diagram institution [16]

to the CSP institution [17], from the UML MARTE institution to the
OZ institution and from the CSP and OZ institutions to the PyCSP
institution.

6 Conclusions and Future Works

In this ongoing work we propose a development methodology aiming to bridge
the gap between approaches used by (e)-science communities to develop their

13



www.manaraa.com

modeling frameworks and model driven engineering approaches used to develop
modeling frameworks with similar complexity.The proposed methodology targets
the reactive systems in general and the (e-science) simulation frameworks in
particular. It relies on the use of UML-MARTE at the requirement level, CSP-
OZ at the design level and PyCSP at the implementation level.

MARTE, a UML profile, defines a set of sub-profiles covering various aspects
related to the modeling of embedded and real time systems. It supports the
so-called Y structure which emphasizes three kinds of models: PIM (Platform
Independent Model) for the application view of systems, PDM (Platform De-
pendent Model) for the execution platforms hosting systems and PSM (Platform
Specific Platform) for the architectural view of systems under construction. CSP-
OZ is a process algebra formal language dedicated to reactive systems. It allows
to formally specify in an integrated way both system state and system behav-
ior views. CSP-OZ provides means to formally verify relevant system properties
like safety and liveness ones. PyCSP is a version of the programming language
Python augmented with some specific CSP operators. PyCSP is mainly used by
the (e-science) community interested in the development of highly concurrent
and parallel scientific applications. The motivation behind the use of MARTE is
the similarity between its modeling approach, based on the so-called Y structure,
and the approaches used in the multiscale simulation field. In this paper, we show
how to exploit such a similarity to bridge the gap between both approaches.

A first contribution of this work consists in extending MARTE with a new
sub-profile, called SSRM (Specific Software Resource Model), dedicated to the
modeling of multiscale simulation frameworks. The SSRM sub-profile is intended
to define specific modeling resources that capture multiscale simulation core con-
cepts. A second contribution of this work consists in setting a formal semantic
framework for our development methodology aiming at ensuring a sound inte-
gration (from a semantic point of view) of UML-MARTE, CSP-OZ and PyCSP.
We adopt a semantic framework based on the institution theory, an appropriate
mathematical theory commonly used in computer science for semantics purposes.
Future works are planned in three directions: The first direction consists in de-
veloping the SSRM sub-profile, that is defining the metamodels that capture
the multiscale simulation core concepts. The second direction consists in setting
institutions for MARTE and for PyCSP, and in expliciting the co-morphisms
identified in the Section 5. The third direction consists in applying our method-
ology for the development of a multiscale simulation platform prototype.

References

1. Topcu. O, Durak. U, Oguztuzun. H, Yilmaz. L, Distributed Simulation: A Model
Driven Engineering Approach; Simulation Foundations, Methods and Applications,
Springer, (2016)

2. Bjornerg. D, HavelundB. K., 40 Years of Formal Methods: Some Obstacles and
Some Possibilities ?; FM 2014, Vol. 8442 Lecture Notes in Computer Science, pp.
42-6, Springer Verlag, (2014)

14



www.manaraa.com

3. Hennicker, R. Bauer, S.S., Janisch, S., Ludwig, M. : A Generic Framework for Multi-
Disciplinary Environmemental Modeling, In. the proceeding of the International
Environmental Modeling and Software Society (iEMS), (2010)

4. Ludwig, M. : Modeling and Architecture of a Generic Framework for Integrative
Environmental Simulations, PHD Thesis, Ludwig-Maximilians University-Germany,
(2011)

5. Moller, M., Olderog, E-R., Rasch,H., Wehrheim, H. : Linking CSP-OZ with UML
and Java - A Case Study, In Proceedings of IFM2004, LNCS, Vol 2999, pp. 267-286,
Springer-Verlag, (2006)

6. Goguen. J., Burstall. R.M.: Institutions: Abstract Model Theory for Specification
and Programming. J. of ACM, 39(1), 95-146, (1992)

7. OMG., A UML Profile for MARTE: Modeling and Analysis of Real-Time Embedded
systems, Beta 2; OMG Document Number: ptc/2008-06-09, (2008)

8. Olderog, E-R., Wehrheim, H.: Specification and (property) inheritance in CSP-OZ,
Science of Computer Programming, Vol 55, pp.227-257, Elsevier, (2005)

9. Borgdoff. J et al, Foundations of Distributed Multiscale Computing: Formalization,
Specification and Analysis, Journal of Distributed Computing, Vol.73, pp. 465-483,
Elsevier, (2013)

10. Babur. O, Verhoeff. T, Brand. M.V.D, Multiphysics and Multiscale Software
Frameworks: An Annotated Bibliography, Technical Report, Eindhoven University
of Technology, The Netherlands, purl.tue.nl/355582797505600.

11. Friborg. R.M, Bjorndalen. J.M, Vinter. B, Scaling PyCSP, Communicating Process
Architectures, P.H. Welch et al. (Eds.),Open Channel Publishing Ltd., (2013)

12. Fischer. C, Olderog. E.R, Wehrheim. H.: A CSP View on UML-RT Structure
Diagrams. In: 4th International Conference on Fundamental Approaches to Software
Engineering, Springer (2001) Engineering, Springe, (2001)

13. Ramos. R, Sampaio. A, Mota. A: A semantics of UML-RT Active Classes via
Mapping into Circus, In 7th IFIP WG 6.1 International Conference FMOODS 2005
Proceedings, pp.99-114, (2005)

14. Broy. M, Cengarle. M.V, Gronninger. H, Rumpe. B, Definition of the System
Model. In: Lano (ed), ch4, pp.63-93, (2005)

15. Knapp, A., Mossakowski, T., Roggenbach, M.: Towards an Insitutional Framework
For Heterogeneous Formal Development in UML - A Position Paper. In: Software,
Services, and Systems. LNCS, vol. 8950, pp.215-230.Springer, (2015)

16. Knapp. A, Mossakowski. T, Glauer. M : An Institution for simple State Machines;
In the proceedings of the international conference FASE2014, Vol. 9033, pp.3-18,
LNCS Spriinger, (2015)

17. Mossakowsk. T, Roggenbach. M. : Structured CSP - A Process Algebra as an
Institution, In Proceedings of WADT 2006, LNCS, Vol 4409, Springer, (2006)

18. Baumeister. H, Bettaz. M, Maouche. M, Mosteghanemi. M, An Institution for
Object-Z with Inheritance and Polymorphism, In: Software, Services, and Systems.
LNCS, vol. 8950, pp.134-154.Springer, (2015)

19. Thomas. F, Gerard. S, Delatour. J, Terrier. ; Software Real-time Resource Model-
ing; Embedded Systems Specification and Design Languages; Vol. 10, pp. 169-182,
Lecture Notes in Electrical Engineering, (2008)

20. Sangiovanni. A, Martin. G; Platform-based design and software design methodol-
ogy for embedded systems, Design Test of Computers, IEEE, (2001)

21. Gerard. S, Espinoza. H, Terrier. F, Selic. B, Modeling fo Languagesr Real Time
and Embedded Systems: Requirements and Standards Based Solutions; In Model
Based Engineering of Embedded Real Time Systems, LNCS 6100, Springer, (2007)

15



www.manaraa.com

22. Penil. P, UML MARTE Methodology for System Design, Microelectronics Engi-
neering Group, TEISA Department, Univeristy of Cantabria, (2015)

23. Herrera. F, Posadas. H. Penil. P, Villar. E, Fererro. F, Valencia. R, Palermo. G, The
COMPLEX methodology for UML/MARTE Modeling and design space exploration
of embedded systems, Journal of Systems Architecture (JSA), Vol. 60, pp. 55-78,
Elsevier, (2014)

24. Tapani A., Nielsen. I. R, D3.2 Concept Synthesis from detailed Hardware -Software
Design, ARTEMIS programme, ASP5; Computing Environments for Embedded Sys-
tems, Version 1.0 Release, (2013)

25. Borgdoff. J, Mamenski. M, Bosak. B, Kuroeski. K, Ben Belgacem. M, Chopard.
B, Groen. D, Coverney. P.V, Hoekstra. A.G, Distributed multiscale computing with
MUSCLE2, the Multiscale Coupling Library and Environment; Journal of Compu-
tational Science, Vol.5, pp. 719-731, Elsevier, (2014)

26. Borgdoff. J et al, Performance of Distributed Multiscale Simula-
tions, Philosophical Transactions of Royal Society, A372: 2013.0407;
http://dex.doi.org/10.1098/rsta.2013.0407, (2013)

16


